Valvular Disease: Aortic valve stenosis and regurgitation

David Foley, MD
foley.david@mayo.edu

CAMA, 10 Sept 2016
No conflicts of interest or financial disclosures
Aortic valve disease

- Rapidly changing landscape with
 - New valvular heart disease guidelines in 2014
 - Transcatheter aortic valve replacement
 - Catheter-based strategies for managing prosthetic valve dysfunction
2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease:
A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

http://content.onlinejacc.org/article.aspx?articleid=1838843
Severe aortic valve stenosis

- In the setting of preserved cardiac output:
 - Peak systolic velocity ≥ 4 m/sec
 - Mean systolic gradient ≥ 40 mmHg
 - Valve area <1 cm²

- Echocardiography primary means of assessing

- Cardiac catheterization in selected cases
Severe aortic valve stenosis: challenging situations

- With depressed cardiac output (low flow, low gradient AS)
 - Velocity and gradient low relative to valve area
 - Dobutamine echocardiogram may help
- Paradoxical low gradient AS
 - Normal cardiac output, but gradient low relative to valve area
Prevalence of moderate-severe aortic valve stenosis by age in Olmsted County

Prevalence of aortic valve stenosis by age in Tromsø, Norway

The changing demographics of the USA

Millions

- 1960
- 2010
51 year old commercial pilot

- Noted to have murmur on entry to Air Force ROTC
 - Evaluation ‘negative’
 - Flew fighter jets
- Has had slowly progressive exertional dyspnea for several years
 - No other cardiac symptoms
 - Otherwise healthy
51 year old commercial pilot

Echocardiogram:

- Severe aortic valve stenosis
 - Aortic valve area 1.0 cm2
 - Mean systolic gradient 53 mmHg
- Normal left ventricular size and wall thickness
- Ejection fraction 65%

Normal coronary angiogram
51 year old commercial pilot
What is his prognosis without operation?

1. Median event free survival 6 months
2. Median event free survival 1 year
3. Median event free survival 2 years
4. Median event free survival 4 years
5. Median event free survival 8 years
Aortic valve replacement by morphology

Natural history of bicuspid aortic valve

- Asymptomatic patients with bicuspid aortic valve and no or mild AS/AR
 - 20-year survival identical to general population
 - 20 year events:
 - HF 7%
 - CV symptoms 26%
 - AVR (majority for AS): 24%
 - Ascending aorta repair 5%
 - No dissection in 212 patients

Natural history of bicuspid valve associated aortopathy

• Progressive ascending aorta enlargement seen in many but not all patients with bicuspid AV

• Low risk of dissection relative to other heritable aortopathies, but increases with diameter
 • Primary aortic repair when 5 cm or greater
 • Concomitant repair with AVR when 4.5 cm or greater

Natural history of unoperated severe aortic valve stenosis

- Ross and Braunwald (1968): Symptomatic AS
 - 5-year survival 35%, 10-year 10%.
 - Risk with HF (2 yr) > syncope (3 yr) > angina (5 yr median survival)
 - More than half of deaths were ‘sudden’

- Varadarajan, et al (2006): Severe AS (AVA ≤ 0.8 cm²)
 - 1-year survival 62%, 5-year 32%, 10-year 18%

Ross and Braunwald. Circulation. 1968; 38(s5):61-67
Natural history of aortic valve stenosis

 - Event free survival: 1 year 93%, 2 years 74%
 - 38% had symptoms at 2 years
 - 3% cardiac death (2 sudden all symptomatic)
 - Event free survival: 1 year 64%, 2 years 36%, 3 years 25%, 4 years 12%, 6 years 3%.
 - 6% cardiac deaths (2 sudden: 1 symptomatic)

Survival without valve replacement and with TAVR from Partner trial

51 year old commercial pilot
What would you recommend?

1. Echocardiographic and clinical follow-up in 6 months
2. Echocardiographic and clinical follow-up in 12 months
3. Surgical aortic valve replacement with tissue prosthesis
4. Surgical aortic valve replacement with mechanical prosthesis
5. Transcatheter aortic valve replacement
Guidelines recommend AVR when

- Class I
 - Severe symptomatic AS
 - Severe asymptomatic AS with EF <50%
 - Severe asymptomatic AS with other cardiac surgery
• Class IIa
 • Very severe (velocity >5 m/sec, mean gradient >50 mmHg) asymptomatic AS
 • Severe asymptomatic AS with abnormal stress test
 • Symptomatic patients with valve area <1 cm2; low EF; and low flow, low gradient AS
 • Symptomatic patients with valve area <1 cm2; low flow, low gradient AS; and normal EF if no other cause of symptoms found
 • Asymptomatic patients with moderate aortic stenosis undergoing cardiac surgery
Follow-up echocardiogram recommendations

- Mild AS: 3-5 years
- Moderate AS: 1-2 years
- Severe, asymptomatic AS: 6 - 12 months
51 year old commercial pilot

- Underwent aortic valve replacement with 27 mm Carpentier Edwards Perimount tissue prosthesis
 - Found to have bicuspid aortic valve
 - Post-operative atrial fibrillation: resolved
- Feeling well at 6 month follow-up
 - Echo: normal left ventricle, normal prosthesis
 - Holter: rare SVPCs, no atrial fibrillation
- Resumed flying
Surgical valve prostheses

- Ball cage
- Tilting disc
- Bovine
- Porcine
- Porcine stentless
Cardiac surgical risk with age

Society of Thoracic Surgeons (STS) Score

http://riskcalc.sts.org/stswebriskcalc/#!

Procedure Type

- CAB Only
- AV Replacement
- MV Replacement Only
- MV Repair
- AV Replacement + CAB
- MV Replacement + CAB
- MV Repair + CAB

Patient Age: 50

Sex:
- Male
- Female

Risk of Mortality: 1.966%
Morbidity or Mortality: 13.677%
Long Length of Stay: 6.341%
Short Length of Stay: 34.499%
Permanent Stroke: 1.565%
Prolonged Ventilation: 5.339%
DSW Infection: 0.190%
Renal Failure: 2.213%
Reoperation: 7.567%
Indications for TAVR

• Severe aortic valve stenosis
• Moderate or high surgical risk: STS ≥3 (Sapien)
• High surgical risk: STS ≥8 (CoreValve)
• Tricuspid aortic valve morphology
 • Not for bicuspid aortic valve
• Appropriate aortic annulus and aortic root dimensions
• Not for primary aortic regurgitation
Transcatheter valve prostheses

Edwards Sapien 3 (bovine)

Medtronic CoreValve Evolut (porcine)
TAVR implantation

- Transfemoral (preferred)
- Transapical
- Transaortic

Modified from https://upload.wikimedia.org/wikipedia/commons/6/6b/Man_shadow_with_organs.png
Results of PARTNER trial for non-operative patients

Results of PARTNER trial for non-operative patients

Results of PARTNER trial for high risk patients

A. Death from Any Cause, All Patients

- Hazard ratio, 0.93 (95% CI, 0.71–1.22)
- P = 0.62

No. at Risk
Transcatheter: 348, 298, 260, 147, 67
Surgical: 351, 252, 236, 139, 65

B. Death from Any Cause, Transfemoral-Placement Cohort

- Hazard ratio, 0.83 (95% CI, 0.60–1.15)
- P = 0.25

No. at Risk
Transcatheter: 244, 215, 188, 119, 59
Surgical: 248, 180, 168, 109, 56

C. Death from Any Cause, Transapical-Placement Cohort

- Hazard ratio, 1.22 (95% CI, 0.75–1.98)
- P = 0.41

No. at Risk
Transcatheter: 104, 83, 72, 28, 8
Surgical: 103, 72, 68, 30, 9

D. Death from Any Cause or Major Stroke

- Hazard ratio, 0.95 (95% CI, 0.73–1.23)
- P = 0.70

No. at Risk
Transcatheter: 348, 289, 252, 143, 65
Surgical: 351, 247, 232, 138, 63
Results of PARTNER trial for high risk patients

TAVR for moderate risk (STS ≥4) patients

TAVR vs Surgical AVR

• Favors TAVR:
 • Mortality in high risk patients (trans-femoral only)
 • MI, major bleeding, AKI, new atrial fibrillation

• Favors SAVR
 • PM implantation, vascular complications, paravalvular regurgitation
 • Paravalvular regurgitation > mild increases mortality

TAVR valve hemodynamics: Partner I trial

‘Natural history’ of tissue prosthesis

- Increased risk of valve degeneration after 10 yrs
 - Risk greater with younger patients
- Risk of thromboembolic complications low (0.7%/year)
 - No routine use of anticoagulants after first several months
 - Aspirin recommended
 - Small risk of late thrombotic obstruction
- SBE prophylaxis recommended
- Echo with change in exam or symptoms or after 10 years
Frailty affects mortality after TAVR

- Multidimensional Geriatric Assessment
 - Cognition, nutrition, ADLs, mobility
- Ability to predict mortality and major adverse cardiac and cerebrovascular events similar to and independent of STS score
- Identifies patients with diminished physiologic reserves
- No clear cutoff as to when ‘too frail’ for TAVR

Frailty assessment used in our Valve Clinic

• 5m gait speed
• Grip strength
• Serum albumin
• ADLs
Early and late mortality after TAVR

- **30-day mortality**
 - Home oxygen use
 - Albumin <3.3 mg/dl
 - Assisted living
 - Age >85

- **1-year mortality**
 - Home oxygen use
 - Albumin <3.3 mg/dl
 - Falls in the last 6 months
 - High Charlson comorbidity score ≥5
 - STS risk of mortality >7%

Valve-in-valve ‘re-operation’

- Option for failed tissue prostheses in high risk patients
 - Some degradation in orifice area
 - Higher gradient
 - Better in 23 mm or larger prostheses
 - Not for mechanical prostheses
- Many patients ‘banking’ on this option when deciding valve type
Future directions for TAVR

• Bicuspid aortic valve
 • 301 patients with bicuspid valve in Bicuspid TAVR Registry
 • ‘Old’: Sapien XT (87); CoreValve (112)
 • ‘New’: Sapien 3 (91); Lotus (11)
 • Success better with ‘new’ valves (92.2% vs 80.9%) mostly due to absence of significant periprosthetic regurgitation

• Primary aortic valve regurgitation?

43 year old aerial applicator

- Had been found to have a bicuspid valve with significant aortic valve regurgitation 10 years prior
 - Lost to cardiology follow-up
 - FAA ‘recommended’ cardiology evaluation
- Asymptomatic
- Active pilot
43 year old aerial applicator

Echocardiogram:
- Bicuspid aortic valve
- Severe aortic valve regurgitation
- Severe left ventricular enlargement
 - 79 mm diameter at end-diastole
 - 45 mm diameter at end-systole
- Normal ejection fraction: 70%
- Borderline ascending aorta dilatation
43 year old aerial applicator
What is his prognosis?

1. Median event free survival 6 months
2. Median event free survival 1 year
3. Median event free survival 2 years
4. Median event free survival 4 years
5. Median event free survival 8 years
Severe aortic valve regurgitation

• Regurgitant volume ≥60 ml
• Regurgitant effective orifice ≥0.3 cm²
• Regurgitant fraction ≥50%
• Angiography: grade III or IV regurgitation

• Diagnosis of chronic severe AR requires LV dilatation
Natural history of chronic aortic valve regurgitation

• Prolonged period of asymptomatic compensation
 • Low risk of sudden death
 • Symptoms and/or need for surgery develop in about 4%/year
• Routine monitoring of LV size and function
• Profound ventricular enlargement or systolic dysfunction often precede symptoms
• Symptomatic regurgitation portends poor prognosis
43 year old aerial applicator
What would you recommend?

1. Echocardiographic and clinical follow-up in 6 months
2. Echocardiographic and clinical follow-up in 12 months
3. Surgical aortic valve replacement with tissue prosthesis
4. Surgical aortic valve replacement with mechanical prosthesis
5. Transcatheter aortic valve replacement
Guidelines recommend AVR when

- **Class I**
 - Severe symptomatic AR
 - Severe asymptomatic AR with systolic dysfunction (EF <50%)
 - Severe AR undergoing other cardiac surgery

- **Class IIa**
 - Severe asymptomatic AR with severe LV dilatation (LVESD >50 mm or 25 mm/m²)
 - Moderate AR undergoing other cardiac surgery
• Class IIb
 • Severe AR with progressive severe LV dilatation (LVEDD >65 mm)
43 year old aerial applicator

- Underwent aortic valve replacement with a 25 mm St Jude Silzone mechanical prosthesis
- Asymptomatic at 6 months follow-up
 - Echocardiogram: normal LV size, ejection fraction 60%, normal prosthetic function, mild-moderate periprosthetic regurgitation
 - Stress test: negative with good exercise capacity
 - Holter: no arrhythmias
- Allowed to return to flying 8 months after surgery
Now 60 year old aerial applicator

- Still asymptomatic
- Echocardiograms essentially unchanged
- Still flying
‘Natural history’ of mechanical prosthesis

• Very low risk of mechanical failure
• Require anticoagulation
 • Risk of acute thrombosis
 • 0.5% per patient-year
• Long-term risk of pannus formation
• Risk of endocarditis
 • SBE prophylaxis
• Echo with change in exam or symptoms
Anticoagulation for mechanical prostheses

• Direct oral anticoagulants contraindicated
• Bileaflet or current-generation of tilting disc
 • Warfarin with goal INR 2.5
 • No bridging required
• High risk or older generation valves
 • Warfarin with goal INR 3.0
 • Bridging required for procedures
• Consider aspirin 81 mg for all prostheses
What if the periprosthetic aortic valve regurgitation had been worse?

• Reoperation
 • Carries somewhat increased risk (roughly double the original surgical risk)
 • Occasionally anatomy or tissue characteristic result in recurrence of defect

• Percutaneous ‘peri-leak’ closure
 • “Plug” placed via catheter approach
 • Appropriate for high risk patients with suitable anatomy
 • Limited access, evolving technology
Summary

• Risk of sudden death greater for severe aortic valve stenosis than for severe aortic valve regurgitation

• Outcomes after aortic valve replacement good

• Role of TAVR evolving, more patients eligible
 • Currently only for degenerative AS or prior bioprosthetic dysfunction

• DOACs contraindicated for mechanical prostheses